Quantifying chain reptation in entangled polymer melts: topological and dynamical mapping of atomistic simulation results onto the tube model.
نویسندگان
چکیده
The topological state of entangled polymers has been analyzed recently in terms of primitive paths which allowed obtaining reliable predictions of the static (statistical) properties of the underlying entanglement network for a number of polymer melts. Through a systematic methodology that first maps atomistic molecular dynamics (MD) trajectories onto time trajectories of primitive chains and then documents primitive chain motion in terms of a curvilinear diffusion in a tubelike region around the coarse-grained chain contour, we are extending these static approaches here even further by computing the most fundamental function of the reptation theory, namely, the probability psi(s,t) that a segment s of the primitive chain remains inside the initial tube after time t, accounting directly for contour length fluctuations and constraint release. The effective diameter of the tube is independently evaluated by observing tube constraints either on atomistic displacements or on the displacement of primitive chain segments orthogonal to the initial primitive path. Having computed the tube diameter, the tube itself around each primitive path is constructed by visiting each entanglement strand along the primitive path one after the other and approximating it by the space of a small cylinder having the same axis as the entanglement strand itself and a diameter equal to the estimated effective tube diameter. Reptation of the primitive chain longitudinally inside the effective constraining tube as well as local transverse fluctuations of the chain driven mainly from constraint release and regeneration mechanisms are evident in the simulation results; the latter causes parts of the chains to venture outside their average tube surface for certain periods of time. The computed psi(s,t) curves account directly for both of these phenomena, as well as for contour length fluctuations, since all of them are automatically captured in the atomistic simulations. Linear viscoelastic properties such as the zero shear rate viscosity and the spectra of storage and loss moduli obtained on the basis of the obtained psi(s,t) curves for three different polymer melts (polyethylene, cis-1,4-polybutadiene, and trans-1,4-polybutadiene) are consistent with experimental rheological data and in qualitative agreement with the double reptation and dual constraint models. The new methodology is general and can be routinely applied to analyze primitive path dynamics and chain reptation in atomistic trajectories (accumulated through long MD simulations) of other model polymers or polymeric systems (e.g., bidisperse, branched, grafted, etc.); it is thus believed to be particularly useful in the future in evaluating proposed tube models and developing more accurate theories for entangled systems.
منابع مشابه
Stress relaxation in entangled polymer melts.
We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the terminal relaxation regime for Z=10. Using the known (Rouse) mobility of unentangled chains and the m...
متن کاملOn two intrinsic length scales in polymer physics : topological constraints vs . entanglement length
– The interplay of topological constraints, excluded volume interactions, persistence length and dynamical entanglement length in solutions and melts of linear chains and ring polymers is investigated by means of kinetic Monte Carlo simulations of a three dimensional lattice model. In unknotted and unconcatenated rings, topological constraints manifest themselves in the static properties above ...
متن کاملNote: A simple picture of subdiffusive polymer motion from stochastic simulations.
Entangled polymer solutions and melts exhibit unusual frictional properties. In the entanglement limit self-diffusion coefficient of long flexible polymers decays with the second power of chain length and viscosity increases with 3–3.5 power of chain length.1 It is very difficult to provide detailed molecular-level explanation of the entanglement effect.2 Perhaps, the problem of many entangled ...
متن کاملDirect observation of the transition from free to constrained single-segment motion in entangled polymer melts.
We report a direct determination of the time dependent mean-squared segment displacement of a polymer chain in the melt covering the transition from free to constraint Rouse relaxation along the virtual tube of the reptation model. This has been achieved by a neutron spin-echo (NSE) measurement of the segmental self-correlation function as conveyed by the spin-incoherent scattering from two ful...
متن کاملTube Model for the Elasticity of Entangled Nematic Rubbers
Dense rubbery networks are highly entangled polymer systems, with significant topological restrictions for the mobility of neighbouring chains and crosslinks preventing the reptation constraint release. In a mean field approach, entanglements are treated within the famous reptation approach, since they effectively confine each individual chain in a tube-like geometry. We apply the classical ide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 132 12 شماره
صفحات -
تاریخ انتشار 2010